2006, November

Thermal Conductivity in Superlattices

半導体超格子構造における熱伝導率の解析

S. Tamura Department of Applied Physics Hokkaido University

Principal Contributors:

K. ImamuraY. TanakaH. J. MarisB. Daly

References

- 1. S. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B60, 2627 (1999)
- 2. B. C. Daly, H. J. Maris, K. Imamura and S. Tamura, Phys. Rev. B66, 24301 (2002)
- 3. K. Imamura et al., J. Phys. Condensed Matter 15, 8679 (2003)
- 4. B. C. Daly, H. J. Maris, Y. Tanaka and S. Tamura, Phys. Rev. B67, 33308 (2002)

Outline of Talk

0. Introduction : Phonons in superlattices

- 1. Out-of-plane conductivity
 - 1-0 Experimental results
 - 1-1 Effect of Brillouin-zone folding
 - 1-2 Effect of relaxation time (anharmonicity)
 - 1-3 Effect of interface roughness
- 2. In-plane conductivity

Application of superlattice structures

Operation of devices is greatly affected by thermal conductivity *K*

(1) Semiconductor laser

 $ightharpoonup large \kappa$ is preferred

Lifetime is reduced by the heat produced

(2) Thermoelectric devices

 \Rightarrow low κ materials are preferable

Figure of merit : $Z = \frac{S^2}{\rho \kappa}$ (V= S ΔT , S : Seebeck coefficient)

Smaller thermal conductivity produces larger temperature difference

Phonon dispersion relations in a bulk crystal

Zincblende structure

Brillouin zone

Dispersion relations $\omega = \omega(\mathbf{k}, j)$ in GaAs (a cubic crystal)

How to calculate the phonon dispersion relations in SLs

Elasticity theory (valid for sub-THz phonons)

$$\rho \frac{\partial^2 u_i(\mathbf{r},t)}{\partial t^2} = \sum_j \frac{\partial S_{ij}(\mathbf{r},t)}{\partial x_j}$$
$$S_{ij}(\mathbf{r},t) = \sum_k \sum_l c_{ijkl} \frac{\partial u_l(\mathbf{r},t)}{\partial x_k}$$

 u_i : lattice displacement S_{ij} : stress tensor ρ : density c_{ijkl} : elastic stiffnes tensor

$$\rho \frac{\partial^2 u_i(\mathbf{r},t)}{\partial t^2} = c_{ijkl} \frac{\partial^2 u_k(\mathbf{r},t)}{\partial x_j \partial x_l}, \quad (i = 1, 2, 3) : \text{wave equations}$$

Plane wave solution

$$\mathbf{u}(\mathbf{r}, t) = a \mathbf{e} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

one longitudinal (L) two transverse (T) $\omega = \omega(\mathbf{k}, j)$

$$\left(\rho \,\omega^2 \delta_{im} - c_{ijmn} \,k_j k_n\right) e_m = 0, \quad (i = 1, 2, 3) \quad \Longrightarrow$$

Wave fields and transfer matrices for superlattices

Wave fields in A layer

(3 pairs of counterpropagating waves)

$$= \mathbf{W}_{n}^{A}(z)e^{i\left(\mathbf{k}_{\parallel}\cdot\mathbf{x}_{\parallel}-\omega t\right)}$$

Definitions of *transfer matrices*

$$\mathbf{W}_{n}^{A}(z) = \Gamma_{A} \Phi_{A}(z) \mathbf{A}_{n} \implies T_{A} = \Gamma_{A} \Phi_{A}(d_{A}) \Gamma_{A}^{-1}$$

$$\square \Rightarrow T \equiv T_B T_A \qquad 6 \times 6 \text{ matrix}$$

Transfer matrix in *periodic* SLs

Transfer matrix T

$$\mathbf{W}(z_{n+1}) = T \mathbf{W}(z_n)$$

- (1) Propagation normal to the layer interfaces (*z direction*) $\mathbf{k}_{\parallel} = \mathbf{0}$
- (2) Single mode, e.g., $\mathbf{u} = (0, 0, U(z, t))$ for L mode

Matrix elements of T

 2×2 matrix

 $Z = \rho v$ acoustic impedance $\det T = 1$

$$T_{11} = \cos(k_A d_A) \cos(k_B d_B) - \frac{Z_A}{Z_B} \sin(k_A d_A) \sin(k_B d_B)$$

$$T_{12} = \sin(k_A d_A) \cos(k_B d_B) + \frac{Z_A}{Z_B} \cos(k_A d_A) \sin(k_B d_B)$$

$$T_{21} = -\sin(k_A d_A) \cos(k_B d_B) - \frac{Z_B}{Z_A} \cos(k_A d_A) \sin(k_B d_B)$$

$$T_{22} = T_{11}(A \leftrightarrow B)$$

$$D = d_A + d_B : unit period$$

Perfect periodicity and phonon dispersion relation $k_{\parallel}=0$

Bloch theorem

$$\mathbf{W}_n = \exp(i\mathbf{q}D)\mathbf{W}_{n-1} = T \mathbf{W}_{n-1}$$

q: Bloch wave number

Dispersion relation in periodic SLs

$$\cos(\mathbf{q}D) = \frac{\mathrm{Tr}(T)/2}{= \cos\left(\frac{\omega d_A}{v_A}\right) \cos\left(\frac{\omega d_B}{v_B}\right) - \frac{1}{2}\left(\frac{Z_A}{Z_B} + \frac{Z_B}{Z_A}\right) \sin\left(\frac{\omega d_A}{v_A}\right) \sin\left(\frac{\omega d_B}{v_B}\right)$$

S. M. Rytov, Sov. Phys. Acoust. 2, 68 (1956)

$$|\operatorname{Tr}(T)/2| < 1 \quad : \text{ frequency band} \qquad -\frac{\pi}{D} < q < \frac{\pi}{D} \quad : \text{ mini-zone}$$
$$|\operatorname{Tr}(T)/2| > 1 \quad : \text{ frequency gap} \qquad q = 0, \pm \frac{\pi}{D} \quad : \text{ zone center and boundaries}$$
$$|\operatorname{Tr}(T)/2| = 1 \implies \omega = \omega_m = m\pi \left(\frac{\mathbf{v}_A}{d_A} + \frac{\mathbf{v}_B}{d_B}\right) \quad : m^{\text{-th}} \text{ order Bragg freq.}$$

Perferct periodic SLs (normal propagation) $k_{\parallel}=0$

Transmission rates **Dispersion relations** (001) (GaAs)₁₅(AlAs)₁₅ SL 0.8 $d_A = d_B =$ $2.83 \text{ A} \times 15 = 85 \text{ nm}$ 0.6 Frequency (THz) ω_2^T Bragg reflections $0.\overline{4}$ L frequency gaps ω_1^L ω_{1}^{T} 0.2 Т transmission dips N (# of periods) = 8 for a finite periodic structure 0.0 0.5 1.0 0.0 0.5 0.0 1.0 qD/π Transmission rate

Perferct periodic SLs (oblique propagation) $k_{\parallel} \neq 0$

(001) (GaAs)₁₂(AlAs)₁₂ SL

Thermal conductivity (κ) in semiconductor SLs

Measurements of thermal conductivity (κ) in semiconductor SLs

2. S. Lee, D. Cahill, and R. Venkatasubramanian, Appl. Phys. Lett. 51,1798 (1987)
 κ in Si/Ge SLs

3. W. S. Capinski, H. J. Maris et al., Phys. Rev. B59, 8105 (1999)

Out of plane κ in GaAs/AlAs SLs

Out of plane thermal conductivity (κ) in semiconductor SLs

W. S. Capinski, H. J. Maris et al., Phys. Rev. B59, 8105 (1999)

Thermalization time and increase in film temperature

Determination of the thermal conductivity (κ)

The rate of heat flow across AI-SL interface

$$\dot{Q} = \sigma_{K} A \left[T_{Al}(t) - T_{SL}(z = 0, t) \right]$$
Kapitza conductance

The rate of temperature change in the Al film

$$C_{AI} d_{AI} \frac{\partial T_{AI}(t)}{\partial t} = -\underline{\sigma}_{K} A \left[T_{AI}(t) - T_{SL}(z = 0, t) \right] (A)$$
Heat flow within the SL (~1D)
heat capacity in the SL
(average of GaAs and AlAs)

$$C_{SL} \frac{\partial T_{SL}(z,t)}{\partial t} = \underline{\kappa} \frac{\partial^{2} T_{SL}(z,t)}{\partial z^{2}} (B)$$
(1) Assume σ_{K} and κ
(adjustable parameters)
(2) With (A) and (B),
determine $\Delta T_{AI}(t)$
 $\Delta T_{AI}(t) = \beta \Delta R(t)$
thermoreflectance

Experimental out-of-plane thermal conductivity (κ) in SLs

(1) κ decreases as *T* increases

(2) **k** decreases as the number of monolayer *n* decreases

How we understand these experimental results

(3) κ is much smaller than κ_{GaAs} (~1/10 for 1x1-SL)

Lattice thermal conductivity (κ)

Fourier's law

$$\mathbf{J} = -\kappa \nabla T$$

Effect of Brillouin-zone-folding in SLs

Opening of frequency gaps and the associated groupvelocity reduction near the zone center and boundaries

- (1) P. Hyldgaard and G. D. Mahan, Phys. Rev. B56, 10754 (1997) simple cubic lattice
- (2) S. Tamura, Y. Tanaka, and H. J. Maris, Phys. Rev. B60, 2627 (1999) FCC lattice

3D FCC lattice model (harmonic approximation)

the atomic pairs A-A, A-B, B-B

Equations of motion for the lattice displacement

Determination of dispersion relations

1x1 SL
$$(n_A = n_B = 1)$$

$$\det \begin{pmatrix} M_A \,\omega^2 + CC & SS & 0 & C_x (1 + e^{-iqD}) & 0 & S_x (1 - e^{-iqD}) \\ SS & M_A \,\omega^2 + CC & 0 & 0 & C_y (1 + e^{-iqD}) & S_y (1 - e^{-iqD}) \\ 0 & 0 & M_A \,\omega^2 - 4K & S_x (1 - e^{-iqD}) & S_y (1 - e^{-iqD}) & C_+ (1 + e^{-iqD}) \\ C_x (e^{iqD} + 1) & 0 & S_x (e^{iqD} - 1) & M_B \,\omega^2 + CC & SS & 0 \\ 0 & C_y (e^{iqD} + 1) & S_y (e^{iqD} - 1) & SS & M_B \,\omega^2 + CC & 0 \\ S_x (e^{iqD} - 1) & S_y (e^{iqD} - 1) & C_+ (e^{iqD} + 1) & 0 & 0 & M_B \,\omega^2 - 4K \end{pmatrix} = 0$$

$$\boldsymbol{\omega} = \boldsymbol{\omega} \left(\mathbf{k}_{\parallel}, q \right)$$

$$C_{x} = K \cos k_{x} a, \ S_{x} = iK \sin k_{x} a$$
$$(C_{y}, S_{y}) = (k_{x} \rightarrow k_{y})$$
$$C_{+} = K(\cos k_{x} a + \cos k_{y} a)$$
$$CC = 2K(2 - \cos k_{x} a \cos k_{y} a)$$
$$SS = -2K \sin k_{x} a \sin k_{y} a$$

Dispersion relations for $k_{\parallel}=0$

To see the effect of group velocity, we have calculated

$$\tilde{\kappa} = \sum_{\lambda} \kappa_{\lambda} / \tau_{\lambda} \equiv \sum_{\lambda} C_{\rm ph}(\omega_{\lambda}) \, \mathrm{v}_{\lambda,z}^{2}$$

Phonon density of states weighted by $V_{\lambda,z}^2$

$$<\mathbf{v}_{z}^{2}(\omega)>=\frac{1}{V}\sum_{\lambda}\delta(\omega-\omega_{\lambda})\mathbf{v}_{\lambda,z}^{2}$$
$$=\frac{1}{(2\pi)^{3}}\sum_{j}\int\frac{dS_{\lambda}}{\mathbf{v}_{\lambda}}\mathbf{v}_{\lambda,z}^{2}\Big|_{\omega_{\lambda}=\omega}$$

DOS weighted by $(v_z)^2$ and calculated $\tilde{\kappa} \sim \kappa / \tau$

$\tilde{\kappa} \sim \kappa / \tau$ vs number of monolayers

How to include the effect of relaxation time

A note on the MD calculation of Daly et al

(3) thermal diffusion constant D is deduced from

 $\Delta T(t) = \Delta T_0 \exp(-4\pi^2 D t / L_x^2)$

[no good fit to the simulated $\Delta T(t)$ for a small t]

$$\mathbf{v} \sim \left(4D/t\right)^{1/2} \rightarrow \infty \quad (t \sim 0)$$

An *ad hoc* modification for the solution for ΔT (t)

$$x^{2} \sim 4Dt \implies \frac{4Dt \ v^{2}t^{2}}{4Dt + v^{2}t^{2}} \implies \begin{cases} v^{2}t^{2} & (t \to 0) \\ 4Dt & (t \to \infty) \end{cases}$$

$$\Delta T(t) = \Delta T_0 \exp\left[-\frac{\pi^2}{L_x^2} \left(\frac{4Dt v^2 t^2}{4Dt + v^2 t^2}\right)\right]$$

the MD results for $\Delta T(t)/\Delta T_0$ are fit to this form using *D* and *v* as adjustable parameters

How to include the effect of relaxation time-2

Molecular dynamics (MD) calculations

(B) K. Imamura et al., J. Phys. Condensed Matter 15, 8679 (2003)

Hamiltonian and interatomic potential

Hamiltonian

$$H = \sum_{\ell} \frac{\mathbf{p}_{\ell}^{2}}{2m_{\ell}} + \frac{1}{2} \sum_{\ell \neq \ell'} \Phi_{\ell\ell'} + \begin{pmatrix} \text{interaction with} \\ \text{heat reservoirs} \end{pmatrix} \quad \begin{array}{l} \ell \equiv \mathbf{r}_{lmn} = (l, m, n)a \\ (m_{\ell} = m_{\text{GaAs}} \text{ or } m_{\text{AlAs}}) \\ \end{array}$$

Interatomic potential

3rd order anharmonicity

$$\Phi_{\ell\ell'} = \Phi(u_{\ell\ell'}) = \frac{\beta}{2} u_{\ell\ell'}^2 + \frac{\beta'}{6} u_{\ell\ell'}^3 \qquad u_{\ell\ell'} = |\mathbf{u}_{\ell} - \mathbf{u}_{\ell'}| \quad \frac{\text{relative}}{\text{displacement}}$$

$$\beta = \frac{3\tilde{B}a}{2} , \qquad \tilde{B} = \frac{C_{11} + 2C_{12}}{3} \quad \text{Bulk modulus}$$
$$\beta' = -\frac{9\tilde{B}\gamma}{\sqrt{2}} \qquad \text{Gruneisen parameter } (\gamma = 2)$$

Algorithm: Symplectic Integrator (SI) method

Heat reservoirs and energy exchange with atoms

Heat reservoirs

- (1) consist of particles with energy (E_H and E_L) given by Boltzmann distribution at T_H and T_L
- (2) A particle collides elastically with an atom at the end of the SL with a given probability w (~0.1) at each time step

(3) Energy given to (removed from) the atom at the site $(n_x = 1, n_y, n_z)$

$$[(n_x = N_x, n_y, n_z)]$$

$$Q_{\mathbf{H},(n_{y},n_{z})}^{(s)} = E_{H} - \frac{\left[\mathbf{p}_{(1,n_{y},n_{z})}^{(s)}\right]^{2}}{2m}, \quad Q_{\mathbf{L},(n_{y},n_{z})}^{(s)} = \frac{\left[\mathbf{p}_{(\mathbf{N}_{x},n_{y},n_{z})}^{(s)}\right]^{2}}{2m} - E_{L} \quad \text{(with collision)}$$
$$Q_{\mathbf{H},(n_{y},n_{z})}^{(s)} = Q_{\mathbf{L},(n_{y},n_{z})}^{(s)} = 0 \quad \text{(without collision)}$$

Heat current and steady state

The *heat* flowing into (from) the SL at a time t

(averaging over time steps s' to reduce fluctuations)

$$\langle Q_{\mathbf{H}}(t) \rangle = \frac{1}{s' \Delta t} \sum_{s=1}^{s'} \sum_{n_y, n_z} Q_{\mathbf{H}, (n_y, n_z)}^{(s)} \langle Q_{\mathbf{L}}(t) \rangle = \frac{1}{s' \Delta t} \sum_{s=1}^{s'} \sum_{n_y, n_z} Q_{\mathbf{L}, (n_y, n_z)}^{(s)}$$

 $\Delta t = 4 \ ps$: an interval of time step (from energy conservation)

Steady state for $t > \tau_0$

$$\langle Q_{\mathbf{H}}(t) \rangle = \langle Q_{\mathbf{L}}(t) \rangle$$

 $\langle Q_{\mathbf{H}}(t) \rangle : t - \text{indep.}$

Heat flux (defined in the steady state)

$$J = \frac{1}{A(\tau_1 - \tau_0)} \int_{\tau_0}^{\tau_1} \langle Q_{\mathbf{H}}(t) \rangle dt$$
cross-sectional area of SI

Temperature profiles

A note on the temperature profiles

(1) No disorder is present

➡ T decreases exponentially with distance

anharmonicity resists the heat flow

(2) Disorder is present \longrightarrow *T* decreases linearly with distance $T(x) = T_H + \frac{T_L - T_H}{L_X} x \longrightarrow \kappa \propto T^0$

scattering from disorder is *T*-indep.

Size independence and thermal conductivity

For a small system size some phonons travel ballistically between the reservoirs

Fourier's law is inapplicable
 (*K* depends on the system size)

Lateral direction

Thermal conductivity in ideal SLs

The simulated κ includes the effect of *lattice anhamonicity*

(1) For large # of monolayers, κ approaches to the experimental values

(2) For small # of monolayers, κ does not explain the experimental results

Anharmonicity is not the main origin of the reduction of κ for small n

Thermal conductivity in SLs with interface roughness-1

How to include the interface roughness

For the *last atomic monolayer* of each SL layer, we assign to each atom the mass either M_{GaAs} or M_{AIAs} randomly with a probability *f*

with roughness f = 0.25 ($f_{max} = 0.5$)

ideal SL

Thermal conductivity in SLs with interface roughness-2

(1) κ in SLs with n < 10 is strongly affected by the interface roughness (2) κ in SLs with f = 0.2- 0.5 coincides well with κ_{exp}

Thermal conductivity in SLs with interface roughness-2

Temperature variations

2. In-plane thermal conductivity

Expt. (by Yao)

Zone-folding effect for the in-plane

Weighted density of states

$$< \mathbf{v}_{z}^{2}(\omega) >$$

= $\frac{1}{V} \sum_{\lambda} \delta(\omega - \omega_{\lambda}) \mathbf{v}_{\lambda,z}^{2}$

Comparison between the SLs without and with roughness

SLs with interface roughness

Summary

I. MD calculation with a classical fcc lattice model for the thermal conductivity (K) of semiconductor SLs

- 1-1) For perfect, periodic SLs, the reduction of κ is in good agreement with the calculation based on the effect of Brillouin-zone folding
- 1-2) With the addition of interfacial roughness, the dependence of κ on SL period similar to that seen experimentally is obtained
- II. These results are obtained with
 - (1) conventional MD simulations which assumes the hot and cold thermal reservoirs
 - (2) a MD simulation for the relaxation of an inhomogeneous temperature distribution

III. The MD calculation have proven to be a powerful method for studying the thermal properties in SLs.